作为一位杰出的老师,就不得不需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。如何把教案做到重点突出呢?下面是小编帮大家整理的小学数学教案,欢迎阅读,希望大家能够喜欢。
小学数学教案1本单元教学10以内数的认识,分1~5各数、0、6~9各数、10四段安排。在认识1~5 各数后插入几和第几的教学,在认识0后插入=、>和<的教学,全单元还编排了两个练习。10以内的数都比较小,学生在生活中经常接触这些数,已经积累了一些感性认识。教材把1~5各数和6~9各数相对集中起来教学,能充分利用学生的已有经验,节省教学时间,提高效率。适时安排几和第几,=、>和<的教学,能促进学生理解数的意义。0在生活中有广泛的应用,而且不同场合往往有不同的含义。10对以后的学习有十分重要的基础作用。因此,教材把0和10的认识单独安排。 1.把认识1~10各数的教学都安排成四个环节。
学生认、读、写1~10各数并不困难,但初步形成这些数的概念却不容易,后者是教学的重点。为此,教材把认数教学分成四个连贯的环节,让学生经历认数的过程,体会数的意义。下面以1~5各数的教学为例,分析这四个环节。
(1) 在现实情境中数物体的个数。例题的主题图中有人和许多物体,数量各不相同。让学生仔细看图,分别数出各种物体的个数,一方面获得认数的感性材料,另一方面感受数(shù)产生于数(shǔ)。数图中的物体,可以看到什么数什么。如1块黑板,上面有5个字;3个女孩跳舞,1个男孩拉手风琴……通过指出物体及其数量的活动,体会数能反映物体的量的属性。
(2) 用算珠表示物体的个数。1个男孩、1架手风琴、1块黑板的个数都是1,都可以用1粒算珠来表示。2盆花、2个红气球、2个黄气球的个数都是2,都可以用2粒算珠来表示。教材通过1粒、2粒……5粒算珠,分别表示一类等价集合的元素个数,帮助学生理解数的意义。教学的时候,先让学生在主题图中寻找哪些物体是1个、哪些物体是2个……再分别用1粒、2粒……算珠表示个数。
2粒算珠表示2的时候,1粒算珠浅色,1粒算珠深色;3粒算珠表示3的时候,2粒算珠浅色,1粒算珠深色;4粒算珠、5粒算珠里也各有1粒深色的算珠。这是因为教学1~5各数,是先认识1,再依次认识2、3、4、5。1粒浅色珠和1粒深色珠,表示1添上1是2;2粒浅色珠和1粒深色珠,表示2添1是3……这里的1粒深色珠表达了相邻两个数之间的关系。教学的时候,要渗透这样的关系。
(3) 用数表示物体的个数。一类等价集合的元素个数,不仅可以用算珠表示,还能用数表示。男孩、手风琴、黑板的数量都用“1”表示,盆花、红气球、黄气球都是“2”个……学生从中体会1~5各数都是有意义的符号。对这些符号意义的体会,就是建立数的概念。
(4) 写数指导。通过示范、描红、独立书写的教学过程,引导学生规范、工整地在“日”字格上写数。教材十分注重学生把数写好,除了本单元的写数指导与练习,在第七单元仍然安排了写数的练习。
2.几和第几的教学分三个层次进行。
非“0”自然数有时表示物体的数量(一共有几个),有时表示物体的次序(是第几个)。教学几和第几,在生活中恰当地应用数,可以加强对数的认识。学生在认识1~5各数时,已经能够用这些数表示物体的个数。教学几和第几,要懂得第几的含义,区分几和第几这两个不同的概念。
(1)教学分三个层次进行。①例题中先数出有几个人排队买票,再数出戴帽子的男孩和不戴帽子的男孩各排在第几。在数的活动中感知几和第几的含义,初步体会它们的区别。②“想想做做”第1题,通过涂4个和涂第4个的操作与比较,进一步体会几和第几有什么不同。③“想想做做”其他题,应用几和第几的知识回答实际问题。
(2)所有学生都在生活中接触过有关几和第几的现象与问题。教学几和第几,要提取这些现象,引导学生从数学的角度研究、理解。在例题里,要让学生说说怎样数出一共几个人排队,怎样数出两个男孩分别排在第几。明白前者要数队伍里所有的人,后者只要数到那个男孩为止。体会“5个人”表示队伍的总人数,“第5个”表示不戴帽子的男孩在队伍里的位置。同样,“想想做做”第1题里涂4个和涂第4个,从两次涂的个数不同,两次涂色的灯笼表示的意思不同,体会几和第几的区别。
(3)正确表述或判断第几要联系方位,离开方位讲的第几往往是不确定的。教材中有三种情况: 一是规定了方位,如“从左边起”涂第4个,“4号车前面”是几号车。二是遵循生活习惯。如在队伍里一般“从前往后”数,楼房的层数都是“从下往上”数。三是允许多样,给学生空间。如猴子捞月亮的图中,戴帽子的那只猴,可以是从上往下第2只,也可以是从下往上第4只。教学时,除已经约定俗成的外,讲第几的同时,应该讲方位。
3.0的含义比较宽广,教材提出了不同的要求。
日常生活中经常使用0,在不同场合,0往往有不同的意思。对此,教材有明确的要求。
(1)着重教学“一个也没有,可以用0表示”。这个内容安排两道例题,第一道例题里三只兔都采到了蘑菇,分别用3、2、1表示蘑菇的个数。还有一只兔没有采到蘑菇,可以用0表示个数。学生在这个情景中体会0也是一个数,它的产生也是计数的需要。第二道例题中,地上原有4个萝卜,都拔掉后,地上一个萝卜也没有,让学生用0表示萝卜的个数。从4个到0个,渗透了“有”与“无”的相对关系,二者在一定条件下会相互转化。
(2)结合直尺教学0。直尺上有0~5六个数,0在直尺的左端,直观显示出0在直尺上的意思:从这里开始。这是数轴上表示数和用直尺量长度必须具备的认识。从0开始,向右依次是1、2、3、4、5,按顺序整合了0~5各数,这也是“想想做做”第3题按顺序写数的基础。
(3)“想想做做”第4题展示了0在日常生活中的广泛应用,只要学生有所体会,不必解释其中0的具体含义。
4.在=、>和<的教材中突出两点内容。
=、>和<都是数学里的关系符号。教学中,除了要帮助学生建立“同样多”“多”“少”等数学概念,认识和使用这三个符号外,还要培养符号化思想。
(1)例题从森林运动会的情境图中分别提取兔与猴、松鼠与熊的只数进行比较,是让学生知道,比较两种物体数量的多少,只要把两种物体对齐着排一排、比一比。这是基本的思想方法,也是后继学习中经常进行的数学活动,从现在起就要帮助学生逐渐掌握。通过排和比,获得对“同样多”“多”“少”的体验。
(2)例题从具体情境中抽象出“×和×同样多”“×比×多”“×比×少”等数量关系,分别用符号=、>、<表示两个数间的大小关系,让学生感受用符号表示关系比图画和文字语言简便。教材把>和<同时教学,5>3和3<5都表示松鼠与熊的只数关系,让学生体会符号和关系的表达是可以转换的。这些都是最初步的符号 ……此处隐藏16407个字……转化成分。
4、把小数化成百分数、0.45=0.60.125=2.5=指名学生板演,并说说化的方法。重点弄清每一步为什么要这样做。让学生进一步观察算式看从小数到百分数的转化小数点是如何变化的?为什么?练习:书上第80
5、认真看课本80页自学。
例2:百分数化为小数。
6、如果反过来把百分数直接改写成小数,又是怎样的呢?你还能说说吗?小组合作交流得出:把百分数改写成小数,只要去掉百分号,同时把小数点向左移动两位)
7、出示例2:把27%、135%化成小数。
师:请学生从右往左观察例1中三个例子,想一想把百分数化成小数应该怎样做?请同学们试一试。(学生板演)让学生用一般的方法转化后汇报。
师:观察百分数数和化成的小数,想一想怎样能很快地把百分数化成小数?并让学生说说怎样移动小数点?教师进行评价,引导验证规律。去掉%,小数点向左移2(同时板书百分数小数)
8、把百分数化成小数12%180%=指名学生板演,并说说化的方法。重点弄清每一步为什么要这样做。让学生进一步观察算式看从百分数到小数的转化小数点是如何变化的?为什么?练习:书上80
三、课时小结
向大家介绍一下今天你掌握了什么新知识?学得轻松吗?是用什么方法学的?
四、作业
完成相应的练习册。
小学数学教案15一、设计理念:
随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。
二、教学目标:
知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。
过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。
三、教学重、难点:
教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。
教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
四、教学方法:“勾漏”双向四步教学法;观察法、比较法、归纳法。
五、教学准备:教学课件
六、教学过程
(一)、勾人入境:
同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?
(二)、漏知互学:
我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程
先来看第一大块的加法方程
186+x=200
用等式的性质这样解:
186+x=200
解:x+186—186=200—186
X=14
熟练后可以这样解:
186+x=200
解:x=200—186
X=14
有什么规律呢?先看符号(+——--符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?
现在我们再看第二大块的乘法方程
36×x=108
用等式的性质这样解:
36×x=108
解:X×36÷36=108÷36
X=3
熟练后可以这样解:
36×x=108
解:X=108÷36
X=3
师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?
现在我们再来看第三大块,减法方程:
X—36=12
用等式的性质这样解:
X—36=12
解:X—36+36=12+36
X=48
熟练后可以这样解:
X—36=12
解:X=12+36
X=48
那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:
108—X=60
用等式的性质可以这样解:
108—X=60
解:108—X+X=60+X
108 =60+X
60+X =108
X+60-60 =108-60
X=48
熟练后可以这样解:
108—X=60
解:X=108—60
X=48
同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。
接下来我们再来学习第四块,除法方程:
X÷12=5
用等式的性质可以这样解:
X÷12=5
解:X÷12×12=5×12
X=60
熟练后可以这样解:
X÷12=5
解:X=5×12
X=60
同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样,1、未知数X在除号前面,2、都用乘法,3、数字没有相反。怎么办,对,先算完另外一种情况(X在除号后的)再说,那么请开始吧。
48÷X=3
用等式的性质可以这样解:熟练后可以这样解:
48÷X=3 48÷X=3
解:48÷X×X=3×X解:X=48÷3
48=3×X X=16
3×X=48
X=48÷3
X=16
仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?1、未知数X在除号后面,2、都用除法,3、数字没有相反。以上说明在除号前后的计算方法不一样,那么它的规律要根据X在除号前后来判断,X在除号前用乘法,X在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。
(三)、流程对测:
小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。
小组开始探究,教师巡逻指导
(四)、结课拓展:请同学们说说这节课你学到了什么?